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The fcc–bcc structural transition: II. A mean field model
for finite-temperature effects.
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Received 24 August 1995

Abstract. We present a model for temperature induced martensitic phase transitions where the
excitations leading to the phase instability are local fluctuations of the respective order parameter
which describes the displacement of a single atom or an atomic plane when transforming structure
A into structure B. The fluctuations of the order parameter are treated in the framework of a
Landau–Ginzburg model and allow us to describe the temperature induced first-order phase
transition as being driven by strain fluctuations (caused by anharmonicities) rather than by
phonon softening. In some materials this phenomenological mean field treatment represents a
possible model for martensitic phase transitions.

1. Introduction

The finite-temperature modelling of martensitic phase transitions (MPTs) is a topic which
is still under hot debate among theoreticians. The main controversy concerns the question
whether MPTs are driven by soft phonons or by a different mechanism which relies on little
or no phonon softening. In addition to this open question about the microscopic nature,
the MPT is governed by several physical processes on different length scales and kinetics.
In contrast to diffusive phase transitions the MPT is a collective phenomenon where a
crystal undergoes a first-order transition from one crystal structure into another over a finite
temperature range (hysteresis).

The first idea about a possible mechanism for MPTs goes back to the work of Zener [1]
who suggested that a softening of the shear mode is responsible for the instability of the
parent lattice. Experimentally such a softening has hardly been observed, leading Friedel [2]
to conclude that these transitions are driven by changes in the entropy. The excess entropy
of the (in most cases high-temperature) bcc phase with respect to the low-temperature
phase (which is often close packed) should be due to a lowering of the phonon frequencies
related to the smaller coordination number in the bcc lattice. The further development
of microscopic theories for the MPT was pioneered by Cochran [3] and Anderson [4]
who independently formulated the soft-mode model. In this model it is assumed that at
a temperatureT0 the effective frequency of one phonon branch becomes zero, triggering
the phase transition. However, it has been pointed out [5] that actually only very few
systems show this behaviour. Krumhansl and Gooding [6] proposed a phenomenological
model which only requires anharmonicities in the order parameter of a Landau-type model
to describe first-order phase transitions. Recently Vul and Harmon [7] suggested the
possibility of a fluctuationless mechanism where the MPT is caused by defects in the crystal
structure. Lindg̊ard and Mouritsen [8] noticed a formal similarity between structural and
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magnetic phase transitions. They discussed structural phase transitions by mapping their
properties to an Ising model where they assume that the two structural modifications can
formally be identified with a ferromagnetic and an antiferromagnetic solution of the Ising
Hamiltonian. In a later paper [9] these authors presented a fluctuation model based on their
magnetic Hamiltonian. The anharmonic model proposed by Krumhansl and Gooding [6, 10]
describes the MPT in terms of a Landau expansion of the free energy by assuming local
displacements which are scaled to low-lying phonon modes. Recently a mean field model
has been presented by Kerr and Rave [11] who treat the thermal properties on the basis
of fluctuations of mean square displacements. All these latter models have one thing in
common, namely that they no longer rely on softening of a certain phonon mode but find
small-scale excitations sufficient to trigger the phase transition.

From this brief overview it becomes clear that a theoretical model which covers all
aspects mentioned above will be hard to develop and is indeed not yet at hand. However
recent years have seen an enormous advance in the understanding of this highly complex
phenomenon [12].

The present paper deals only with the microscopic part of the MPT where we try to
explain how one structure can be transformed into another and how these two modifications
are in a thermodynamic equilibrium. We start from quantum mechanical (T = 0 K)
total energy calculations (see part I of the present paper [13] for a specific lattice
transformation which provides the basis for a thermodynamic model where we assume
that the MPT is triggered by local fluctuations of the ‘geometrical’ patterns mediating the
lattice transformation. It will be shown that the excess entropy created by these fluctuations
stabilizes the high-temperature phase. This model will be applied in section 3, where we
illustrate for one example, namely the Bain [14] transformation in Ca, that it successfully
describes the first-order phase transition from fcc to bcc. In addition, other systems and
transformations are mentioned.

2. A mean field model for MPTs

2.1. The fluctuation Hamiltonian

The basic idea of our model relies on the combination of various techniques which are
available nowadays. In part I of this paper [13] we have calculated the total energy
E(c/a, V ) along the Bain transformation between the fcc and bcc lattice by a continuous
change of thec/a ratio in a body centred tetragonal (bct) unit cell, wherec/a = 1 describes
the bcc andc/a = √

2 corresponds to the fcc structure at a given volumeV . This quantum
mechanical result provides the basis for a thermodynamic Landau–Ginzburg model which
contains thermally excited fluctuations of the order parameter. Our finite-temperature model
should contain theT = 0 K results (without fluctuations) as a special case for which the
total energy is given by the band structure calculations. ThisT = 0 K total energy can be
written as a polynomial in powers of the order parameters, which in our case are the Bain
variablec/a and the volumeV (for details see appendix of part I [13]):

E(c/a, V ) =
n∑

i=0

m∑
j=0

Aij (c/a)iV j . (1)

Now we generalize the Landau expansion given by (1) by introducing local fluctuations
of the order parameters, namelyξ(r) (along c/a) for the Bain variable andν(r) for the
volume. Formally this means that we replace the order parameterc/a by 〈c/a + ξ(r)〉,
andV by 〈V + ν(r)〉 where〈 〉 denotes the statistical average over the phase space of the
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fluctuations in the Gaussian approximation. For the first six powers of the order parameter
one obtains

〈(c/a + ξ(r))〉 = c/a

〈(c/a + ξ(r))2〉 = (c/a)2 + 〈ξ2(r)〉
〈(c/a + ξ(r))3〉 = (c/a)3 + 3(c/a)〈ξ2(r)〉 (2)

〈(c/a + ξ(r))4〉 = (c/a)4 + 6(c/a)2〈ξ2(r)〈+3〈ξ2(r)〉2

〈(c/a + ξ(r))5〉 = (c/a)5 + 10(c/a)3〈ξ2(r)〉 + 15(c/a)〈ξ2(r)〉2

〈(c/a + ξ(r))6〉 = (c/a)6 + 15(c/a)4〈ξ2(r)〉 + 45(c/a)2〈ξ2(r)〉2 + 15〈ξ2(r)〉3

and completely analogous equations for the volume and its fluctuations. In the Gaussian
approximation the statistical average over odd powers of the fluctuations vanishes, and any
average over an even power of the fluctuation can be expressed in terms of powers of
〈ξ2(r)〉 according to

〈ξ2k(r)〉 = (2k − 1)!! 〈ξ2(r)〉k. (3)

Consequently the thermal properties of the resulting free energy includingc/a fluctuations
are governed by the thermal dependence of a single variable, namely〈ξ2(r)〉 (and
analogously for〈ν2(r)〉. At T = 0 K, where the fluctuation amplitude vanishes, the
expressions given in (2) guarantee that the original Landau expansion of the ground state
(1) is recovered.

By introducing fluctuations the energy becomes a function of four variables,
E(c/a, V, 〈ξ2(r)〉, 〈ν2(r)〉), where the fluctuations are assumed to be non-centered random
variables varying on a spatial scale larger than the range of interactions. In the Landau–
Ginzburg expansion of the free energy, non-local effects are taken into account by the
lowest-order gradient terms and the Hamiltonian reads

H = 1

V

∫
d3r

{
E(c/a + ξ(r), V + ν(r)) + K

2
(∇ξ(r))2 + Q

2
(∇ν(r))2

}
. (4)

Using this Hamiltonian we calculate the free energy via a classical partition function integral
over the phase space of the fluctuations. In general this functional integral cannot be
calculated but the best possible approximation to the exact free energy is obtained by
using the Peierls [15]–Feynman [16] inequality, a procedure which essentially describes a
variational derivation of a mean field mode [17].

We arrive at an expression for the free energyF which reads

F = E + φ − kBT

2

∑
k6kc

ln
πkBT

2((K/2)k2 + ∂φ/∂〈ξ2(r)〉) − 〈ξ2(r)〉 ∂φ

∂〈ξ2(r)〉

−kBT

2

∑
k6qc

ln
πkBT

2((Q/2)k2 + ∂φ/∂〈ν2(r)〉) − 〈
ν2(r)

〉 ∂φ

∂〈ν2(r)〉 (5)

where the energy contribution of the fluctuations is given by the functionφ defined by

φ = 1

V

∫
d3r [E(c/a + ξ(r), V + ν(r)) − E(c/a, V )]. (6)

The mean square of the fluctuation〈ξ2(r)〉 is given by thek-space integral over thek-
dependent susceptibility (we use the termsusceptibilityin analogy to magnetic systems, but
in its more general meaning of a response function), which for a system isotropic ink gives〈

ξ2(r)
〉 = V

(2π)3

kBT

2

∫ kc

0

4πk2

(K/2)k2 + ∂φ/∂〈ξ2(r)〉 dk (7)
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with an analogous equation for the volume fluctuation〈ν2(r)〉. In (7) two new parameters
appear, namely the ‘stiffness’ constantK which determines the width of the momentum
distribution and the cut-off wave vectorkc that defines the largestk-vector (shortest
wavelength) of the fluctuations. (For the volume fluctuation the stiffness constantQ and
the cut-off qc are used.) This cut-offk-vector is needed because the correlation function
(integrand in (7) is of Ornstein–Zernicke form and thus requires an upper limit in the
integration to keep the integral finite.

The equations of state are derived by minimizingE andφ with respect to the variables
c/a andV which gives

∂E/∂(c/a) + ∂φ/∂(c/a) = 0 (V = constant)

∂E/∂V + ∂φ/∂V = −P (c/a = constant)
(8)

where P is the external uniform pressure. The equations of state together with the
expressions for〈ξ2(r)〉 and 〈ν2(r)〉 (7) must be solved self-consistently for any given
temperature to determine the respective equilibrium values ofc/a, V , 〈ξ2(r)〉, and〈ν2(r)〉.

From the general properties of the functionφ in (6) the stiffness constantsK andQ are
related to the correspondingT = 0 K correlation lengths, namelyλ for the strain fluctuations
andµ for the volume fluctuations, via

K = 2
(
∂φ/∂〈ξ2(r)〉)λ2 = V C ′λ2 Q = 2(∂φ/∂(ν2(r)〉)µ2 = (B/V )µ2 (9)

where the derivatives are taken atT = 0 K. In order to derive (9) we have implicitly
assumed thec/a variation along Bain’s path. In this case the constantsK and Q can be
expressed in terms of the tetragonal shear constantC ′ and the bulk modulusB. These
relations reflect the physical intuition that these long-wavelength fluctuations are governed
by macroscopic quantities describing the elastic behaviour of the crystal.

2.2. Solutions for the transition temperature and the entropy

Let us now explore the behaviour of our model at the transition temperatureTM where
the first and the second derivative of the free energy with respect to the order parameters
must vanish. This knowledge allows us to calculate the respective values forc/a and V

but also the related critical fluctuations〈ξ2(r)〉c and 〈ν2(r)〉c. It should be stressed that all
these four quantities are entirely determined by the ground state properties of the system.
By combining the condition∂φ/∂〈ξ2(r)〉 = 0 with the value for〈ξ2(r)〉c we obtain an
expression for the transition temperatureTM by carrying out thek-space integration in (7)
at T = TM :

kBTM = 2π2(λ2/kc)C
′〈ξ2(r)〉c. (10)

(10) shows thatTM is proportional to the elastic constant (atT = 0 K) relevant for the
transition path in accordance with the physical intuition that the stiffer the lattice (with
respect to a particular distortion) the higher the transition temperature. TheT = 0 K
correlation lengthλ determines the shape of thek-distribution and thus describes the
dynamical response of the lattice to long-wavelength excitations.

These classical fluctuations should be essentially linear inT , as required by the
fluctuation–dissipation theorem. Therefore the temperature dependence of the fluctuation
given in (7) can be rewritten in the approximated form:〈

ξ2(r)
〉 = 〈

ξ2(r)
〉
c
T /TM. (11)

In most cases the temperature dependence of the fluctuation is well described by this linear
relation which has the advantage that the two parametersK andkc can be replaced by the
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transition temperature which, however, must be taken from experiment. If the dependence
of the total energy on the order parameter is known from band structure calculations (e.g.
for Bain’s path according to (1)), the finite-temperature properties of the phase transition
depend only on these ground state results and a single ‘adjustable’ parameter, namely the
experimental transition temperature. In addition, the application of this explicit temperature
dependence has the advantage that for some of the models discussed [6] analytic solutions
can be found (see the appendix).

From the free energy (5) we can also calculate the entropy contribution of the strain
fluctuations:

S = kB

2

∑
k6kc

(
1 + ln

(
πkBT

2((K/2)k2 + ∂φ/∂〈ξ2(r)〉)
))

; (12)

the respective term for the volume fluctuations is completely analogous. It is easy to see that
this expression for the entropy, which is based on a classical high-temperature expansion,
diverges forT = 0. However, if the temperature is high enough, the system should be in a
classical regime so (12) is valid.

With this expression for the entropy we can formulate the total energy from the free
energy given in (5):

U = E + φ − 〈
ξ2(r)

〉 ∂φ

∂〈ξ2(r)〉 + kBT

2

∑
k6kc

−〈
ν2(r)

〉 ∂φ

∂〈ν2(r)〉 + kBT

2

∑
k6qc

(13)

which is easy to evaluate. The total energyU contains contributions from both order
parametersc/a and V . The two sums in (13) are typical for our classical model. They
simply count the number of degrees of freedom (number of waves) and just lead to a
constant energy shift. With a plot ofU for a chosen temperature as a function ofc/a andV

we can visualize the temperature evolution of the order parameter describing the structural
transition. This treatment is similar to a previous investigation on the magnetovolume
anomalies in Invar alloys (see figure 4 of [18]). In the application below we will show
that the entropy contribution to the total energy stabilizes the high-temperature phase and
consequently our fluctuation model describes an entropy driven phase transition, similar to
the model given by Kerr and Rave [11].

3. Applications of the fluctuation model

3.1. The fcc to bcc transition in calcium

Now we apply our model to calcium assuming the Bain transformation. (For a detailed
discussion of the basic mechanism of Bain’s path see part I of this work [13].) Ca is a
group II element and its ground state is fcc [19]. At atmospheric pressure Ca undergoes
a martensitic phase transition to the bcc structure at a temperature of about 725 K. At a
pressure of about 19.5 GPa (andT = 0 K) there is a transition into the bcc structure [20]
which has also been explained by band structure calculations [13, 21]. It was suggested
that the transition is of Bain type, although phonon measurements using inelastic neutron
scattering [22] exhibited neither a softening ofC ′, as expected for a Bain mechanism, nor
any pronounced phonon anomalies near the martensitic phase transition. In the bottom panel
of figure 1 we show the band structure results [13] for the total energy as a function of both
c/a and the volumeV . The total energy has a local minimum at both ‘cubic’ values for the
c/a ratio (c/a = 1 for bcc,c/a = √

2 for fcc) but the minimum atc/a = 1 is very shallow
and is higher in energy than that atc/a = √

2 corresponding to the fcc ground state. There
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Figure 1. Total energy contoursE(c/a, V ) for Ca for T = 0 K (lower panel) and for a
temperature just above the phase transition (upper panel). The volume is given in bohr3/atom
and the energy difference between adjacent contour lines is 0.1 mRyd.

is a small difference in the calculated equilibrium volumes, namelyVf cc = 257 bohr3 and
Vbcc = 254 bohr3 which leads to a positive coupling betweenc/a and the volume since
bothc/a andV are larger in fcc than in bcc. For our finite-temperature calculations we take
the T = 0 K energy surface and assume a transition temperature of 725 K [19]. For the
cut-off wave vectors and the stiffness constants the following values are used:K = 21.0,
Q = 0.2, kc = 9.5, qc = 7.0 (all quantities are in atomic units).K is determined according
to (9) from the low-temperature correlation lengthλ = 10 Å, a value we took from Petryet
al [23], who derived it for Ti by neutron diffraction experiments. The cut-off parameterkc

is adjusted to the experimental transition temperatureTM , while Q andqc, (associated with
the volume fluctuations) hardly influenceTM . Nevertheless these small volume fluctuations
are needed, since the coupling betweenc/a and volumeV stabilizes the high-temperature
phase.

We now solve (self-consistently) our fluctuation model for a set of temperatures and
thus obtain the temperature dependence of various macroscopic quantities describing the
state of the system. In figure 2 we display, as a function of temperature, thec/a ratio and
the logarithm of the correlation lengthζ which is defined as

ζ 2 = K/
(
2∂φ/∂

〈
ξ2(r)

〉)
. (14)

The c/a ratio shows almost no temperature variation belowTM but jumps discontinuously
from

√
2 (fcc) to unity (bcc) atTM (the small deviations from these values are due to

the polynomial fit according to (1) and the numerical solution). This jump is associated
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Figure 2. The temperature variation of (a) the Bain variablec/a, (b) the logarithm of the
correlation length, ln(ζ ), and (c) the tetragonal shear constantC ′ and the bulk modulusB.

with a divergence of the correlation lengthζ (figure 2(b)). The two elastic properties, the
bulk modulusB and the tetragonal shear constantC ′ (figure 2(c)) behave differently. The
bulk modulusB shows only a weak temperature dependence, whereas the tetragonal shear
constantC ′ vanishes at the transition temperature and then jumps to a large finite value for
the bcc structure. At low temperatures the system is in a minimum corresponding to the fcc
structure. As the temperature is raised, this minimum becomes metastable when the first and
second derivatives with respect toc/a vanish (C ′ = 0), which definesTM . Here a first-order
phase transition to the new stable minimum (now at fcc) occurs. In this special case of the
Bain transformation we observe a softening ofC ′(T ) which is the relevant elastic constant,
in accordance with the proposal made by Zener [1]. If the crucial order parameter is not
c/a, another elastic constant (or a linear combination of those elastic constants associated
with the transformation path) will vanish at the transition temperature. This interpretation
corresponds to the condition for the localized soft-mode model proposed by Clapp [24].

In the upper panel of figure 1 we show the total energy surface (13) for a temperature
above the transition temperature of 725 K. We find a single stable minimum atc/a = 1
(bcc). The minimum atc/a = √

2 (fcc), which described the ground state atT = 0 K
(bottom panel of figure 1), has disappeared but its traces remain and cause an anharmonicity
in the total energy surface which gradually weakens with increasing temperature. Figure 3
shows the high-temperature solutions for the entropy1S (12) with a positive discontinuity at
the transition temperature as expected for an ‘entropy driven’ MPT. The numerical value of
the discontinuity is about 0.15 J mol−1 K−1 and compares fairly well with the experimental
[25, 26] result of 0.32 J mol−1 K−1.

Ignoring quantum effects one may speculate that by slow cooling from temperatures
aboveTM Ca can be stabilized in the bcc structure, since even atT = 0 K there is a
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Figure 3. The excess entropy1S near the transition temperature.

metastable minimum forc/a = 1. However, it should be noted that zero-point fluctuations
might be enough to destabilize this local minimum so that this metastable low-temperature
bcc phase may not exist. In the case of Li, which shows a similar total energy surface
[13], it has been found that very slow cooling of dispersed particles keeps them in the bcc
structure [27].

By adding a−PV pressure term to the free energy we can also study the influence of
pressure on the transition temperature. For Ca we find that for small pressures the slope of
the phase boundary dP/dT (at T = TM ) separating the fcc and the bcc phase is positive,
in agreement with experiment [19].

3.2. Application to other systems

In part I of this paper we presented band structure calculations for the Bain transformation
in the simple metals Li, K, Rb, Ca and Sr, and for the early transition metals Ti and V.
The five simple metals have comparable energy surfaces and in all cases the fluctuation
model can be applied and describes a first-order phase transition between fcc and bcc. (The
detailed results for Sr have been published elsewhere [28].) As discussed in the first part of
this paper, the energy surfaces for the transition metals differ significantly from those of the
simple metals. For Ti we find a minimum atc/a = √

2 (fcc) but a saddle point atc/a = 1
(bcc) and vice versa for V (for details see [13]). If we apply the fluctuation model to Ti
we find a first-order phase transition from fcc to bcc. (One should note, however, that the
ground state of Ti is hcp and not fcc, but, since these two structures are closely related to
each other, the fcc structure should be a fairly good approximation to the true ground state.)
For vanadium the ground state is bcc and there is a saddle point atc/a = √

2 (fcc). The
energy difference between these two extrema in V is about 20 mRyd compared to 3 mRyd
for Ti. If we keep all parameters as in the calculation for MPT in Ti (TM = 1155 K) we
find for V a first-order phase transition from bcc to fcc but at a temperature of about 9000 K
which is well above the melting point. Therefore this large energy difference between the
bcc and fcc structure explains the high stability of the bcc V phase.

Our fluctuation model is not restricted to the Bain transformation. Yeet al [29]



fcc–bcc structural transition II 825

calculated the hcp–bcc and 9R–bcc transformations in Na (9R is a close-packed hexagonal
polytype of the hcp structure). This transformation is based on a conjection by Burgers [30]
and relies on a different order parameter fromc/a. If we use their band structure results for
the total energy along these transformation paths as an input to our fluctuation model we
find a first-order phase transition from hcp to bcc, and a weakly first-order transition from
9R to bcc (details will be given in a forthcoming publication).

4. Conclusion

The fluctuation model for martensitic phase transitions described in this paper represents a
generalization of those models which rely on little mode softening. We find that no softening
of a specific mode is necessary for the transition whereas order parameter fluctuations are
sufficient to trigger a first-order phase transition. Since the order parameter for a structural
phase transition usually describes the motion of single atoms or atomic planes in the crystal,
the fluctuations along the transformation path can be seen as random and local distortions
with long wavelength. The properties of the fluctuation model rely on the relevant elastic
constants for the specific transformation path. Since the elastic constants describe the
properties of the phonon system in the limit of smallk-vectors (long wavelength) the
amplitude of the fluctuations is directly related to the phonon dispersion in the centre of
the Brillouin zone. With the fluctuation model we could show that these small-k (long-
wavelength) displacements are sufficient to trigger a first-order phase transition. It should
be noted that our fluctuation model is no alternative for those systems which are truly based
on phonon softening (e.g. ferroelectrics). It will of course depend on the specific energy
scale of a certain transition, which of the mechanisms (soft phonons or fluctuations) will
govern the behaviour at the transition temperature. It may well be that at low temperatures
a system starts off with random fluctuations which at higher temperature, when shorter-
wavelength components of the fluctuations become excited, decay into the respective
phonons so that finally a mechanism as described by Krumhansl and Gooding [6] leads
to the phase transition.

Appendix

Krumhansl and Gooding [6] formulated a generic model for martensitic phase transitions
with little phonon softening and expressed the free energy as a function of the relevant order
parameterx:

F = A(T )x2/2 − x3/3 + x4/4. (A1)

In their publication [6] they gave a detailed discussion of various cases where
transformations can be described by only varying the coefficientA. We note that the
curve with 0< A(T = 0) < 2/9 describes the alkaline metals, while a negative value for
A(T = 0) corresponds to the case found for Bain transformations of transition metals (see
part I of this paper [13]). They introduced the effect of temperature by assuming thatA(T )

has the form

A(T ) = ω2 + aT (A2)

where ω2 is the characteristic frequency of a low-lying phonon mode. They were able
to show that a variation ofA(T ) can trigger a first-order phase transition. For a detailed
discussion of the properties of this model we refer to [6] and [10]. A negative value
for A(T = 0) leads to conceptual problems since it would represent a negative phonon
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frequency (overdamping). Kerr and Rave [11] have introduced order parameter fluctuations
which affect the shape of the on-site potential energy using an alternative interpretation of
(A1) for displacive transitions [10].

Let us now rewrite (A1) by including fluctuationsg of the order of parameterx, where
g is an abbreviation for the statistical average over the square of the respective fluctuation,
so thatg is analogous to the quantity defined by (7):

F = (A/2)
(
x2 + g

) − 1
3

(
x3 + 3xg

) + 1
4

(
x4 + 6x2g + 3g2

)
. (A3)

Reordering (A3) in powers ofx gives

F = (
3
4g2 + (A/2)g

) − xg + (
x2/2

)
(A + 3g) − x3/3 + x4/4. (A4)

The last three terms of (A4) exactly resemble the properties described by the generic model
discussed earlier [6]. The coefficientA becomes renormalized by the fluctuations which
make it temperature dependent (note thatg is essentially linear inT ) so that we find a
justification for theansatzin (A2). The first term defines a temperature dependent shift of
F . A new feature is found in the linear term−xg which causes a pseudostrain along the
direction of the transition path increasing with temperature and which acts as a restoring
force. A similar feature has also been noted by Kerr and Rave [11] who discussed it together
with an extensive analysis of the properties of the asymmetric order parameter model. If
their model is applied to ‘real’ systems as for the Bain transformation in simple metals,
the two minima of the free energy function according to (A1) can be identified with the
corresponding minima in the total energy curve found for example in Ca (figure 6 in part
I [13]) where the stable minimum (with a finite value ofx) corresponds to the fcc phase
(stable atT = 0) and the metastable minimum (atx = 0) corresponds to the bcc phase
(stable forT > 725 K). If the fluctuations should describe a phase transition between the
low-temperature fcc and the high-temperature bcc phase, the order parameterx must jump
at the transition temperature from a finite value tox = 0 which would then describe the
bcc phase.

In general the (fluctuation induced) restoring pseudostrain counteracts a possible phase
transition so that this effect could make these strain driven transformations less favorable
than transformations along a phononic order parameter as described by the Burgers
transformation [30].
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